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1 Summary

The goal of this research program was to develop a novel technique for focusing x-rays

based on the optical system of a lobster's eye. A lobster eye employs many closely packed

reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique

properties: they have unlimited fields of view and can be manufactured via replication of

identical structures. Because the angular resolution is given by the ratio of the size of the

individual optical elements to the focal length, optical elements with sizes on the order of one

hundred microns are required to achieve good angular resolution with a compact telescope.

We employed anisotropic etching of single crystal silicon wafers for the fabrication of

micron-scale optical elements. This technique, commonly referred to as silicon micromachining,

is based on silicon fabrication techniques developed by the microelectronics industry. An

anlsotropic etchant is a chemical which etches certain silicon crystal planes much more rapidly

than others. Using wafers in which the slowly etched crystal planes are aligned perpendicular to

the wafer surface, it is possible to etch a pattern completely through a wafer with very little

distortion. Our optics consist of rectangular pores etched completely through < 110> oriented

silicon wafers. The larger surfaces of the pores (the minor elements) were aligned with the

<111> planes of the crystal perpendicular to the wafer surface. The first silicon microfabrication

was performed by Dr. Kenny in the spring of 1992 after receipt of the President's Fund award.

Andrew Chen, a graduate student at Columbia, visited JPL for the summers of 1992 and 1993

during which time most of the silicon fabrication was performed.

We have succeeded in producing silicon lenses with a geometry suitable for 1-d focusing

x-ray optics (Chen 1993). These lenses have an aspect ratio (40:1) suitable for x-ray reflection

and have very good optical surface alignment. We have developed a number of process

refinements which improved the quality of the lens geometry and the repeatability of the etch

process. A significant progress was made in obtaining good optical surface quality. The RMS

roughness was decreased from 110 A for our initial lenses to 30 A in the final lenses. A further

factor of three improvement in surface quality is required for the production of efficient x-ray

optics. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for

testing the optics.

In addition to the individuals listed on the cover page, three students from Columbia were

involved in this work: Eric Ford, a graduate student, and Jay Demas and Nashrid K.ibria, both

undergraduates. Andrew Chen received a three year award from the NASA Graduate Student

Research Program at the Jet Propulsion Laboratory, "Development of Silicon Microstructures

for X-Ray Optics".



2 Lobster Eye Optics

The novel optical devices for x-ray astronomy that we are developing are based on the

lobster's optical system (Land 1972). A lobster eye lens is a spherical shell made of many

channels with square cross sections; the cross section of such a lens is shown in Figure 1. The

sides of the tubes are reflective and point toward the center of curvature of the shell. Parallel

light rays from a distant object arc focused by external reflection onto a focal surface with a

radius of curvature equal to half that of the shell. Since the lens has no intrinsic optical axis,
there is no limitation on the field of view.

Focused x-ra cs

Unfocused x-ray
\

\0

'\0

\
_ Focal surface
\

Center of curvature

Figure 1. Geometry of a lobster eye lens.

In the x-ray range, the angular resolution of the lobster eye lens is limited primarily by

geometric optics. The image on the focal cylinder will have an angular size A0 =w/f, where w is

the channel width andfis the focal length. To obtain good angular resolution with a moderately

sized telescope, it is advantageous to have pores which are as narrow as possible. For example,

a 30 arcsecond image size for a 2 meter focal length requires a channel width less than 300 pro.

To efficiently reflect x-rays, the aspect ratio of the channels (the ratio of the length of the

reflecting surface to the separation between reflecting surfaces) must be matched to the critical

angle of reflection (Angel 1979). The most efficient lenses are those in which the channel aspect

ratio is approximately equal to the inverse of the critical angle for x-ray reflection. In this case,

an x-ray will typically undergo one reflection (in each plane) when traversing the lens. The

optimal aspect ratio is 40:1 for 2 keV x-rays on gold and 200:1 for 15 keV x-rays on iridium.

The angular resolution of the lens is also affected by spherical aberration and diffraction.

Spherical aberration depends on the range of allowed reflection angles, which is limited either

by the opening angle of the pore or by the critical angle. For a channel aspect ratio of 40:1, the
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maximumsphericalaberrationis 3 arcseconds.For reflectionoff gold, theaberrationis lessthan
1arcsecondfor energiesabove2.4 keV. With aporesizeof 50 pan, diffraction will limit the

angular resolution to 1 arcminute at 0.1 keV and 5 arcseconds at 1 keV.

In summary, a lobster eye telescope suitable for x-ray astronomy consists of a large number

of small flat reflecting surfaces. For efficient x-ray reflection, the channels must have an aspect

ratio matched to the critical angle of reflection and the surfaces must be smooth. To provide

high resolution focusing, the surfaces must be accurately aligned and closely packed (separations

on the order of 100/am).

3 Results

3.1 MCP Lenses

Lobster eye x-ray optics were first fabricated using glass microchannel plate (MCP)

technology. MCP's were first used to focus x-rays by Wilkins (1987). Our group was the first

to use square pore MCP's, which have a vastly higher focusing efficiency than standard circular

pore plates. Our results have been published in Applied Optics (Kaaret 1992). The reader is

referred to that paper for a detailed description. Our main results are summarized briefly below.

The surfaces of individual MCP channels were measured and found to have high

mieroroughness transverse to the channel axis and low microroughness parallel to the axis. A

total of six measurements were made on the three types of MCP's of which we had samples:
hydrogen reduced MCP's from Philips, hydrogen reduced MCP's from Galileo, and unreduced

MCP's from Galileo. The roughness on all the MCP's has the same form, grooves that run along

the length of the MCP pores. The values of the roughness vary from plate to plate. The best

values are for the hydrogen reduced Galileo MCP. For this MCP, the high frequency transverse

roughness has an RMS value of 5.9 nm and a gaussian autocorrelation function with correlation

length 1.41 pro. The roughness is significantly worse than the 1.5 nm typical for metal foil

optics (Christensen 1991). These longitudinal grooves form a random grating in the conical

diffraction geometry. The parameters of the grating can be derived from the surface profile

measurements. With the addition of conical diffraction using the measured surface parameters

to our ray tracing code, we were able to accurately reproduce the x-ray images observed.

The best results on the angular alignment of MCP pore surfaces come from G. Fraser of the

University of Leicester, England. Fraser and collaborators observed the cruciform image

structure of a two dimensionally focusing MCP lens in the soft x-ray band (Fraser 1992). They

used a second generation MCP made by Galileo Electro-Optics. During the manufacture of this

MCP, special procedures were used to ensure good alignment of the pore surfaces. The MCP

represents the best available technology in MCP manufacture. Fraser et al. illuminated the

entire surface of the MCP with silicon K-o_ radiation (1.74 keV) and observed the image

produced. They measured an angular resolution of 5.05 x 15.1 arcminutes FWHM along the two
perpendicular axes (Fraser 1993). These results are far better than what we obtained with first

generation MCP's. However, they are significantly worse than the 2 arcminute resolution that

can be obtained with metal foil optics (Christensen 1991).

Our tests of MCP optics proved the concept of lobster eye optics in the x-ray regime. Our
measurements, together with those of Fraser, have shown the limitations of the MCP fabrication
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technique.We concludethatneitherthef'mstnor thesecondgenerationsquareMCP'sare
adequatefor usein x-ray astronomy.Developmentof suitableMCP opticswill require
improvementsin theMCP manufacturingprocess.

3.2 Silicon Lenses

The limitations of MCP optics led us to consider new techniques for the fabrication of

lobster eye optics. Replication of identical rectilinear micron scale structures is common

procedure in the microelectronics industry. Techniques exist for the manufacture of

microstructures which have crystal planes as surfaces. The crystal planes of a single crystal are

extremely fiat and accurately aligned; they seem to be ideal optical surfaces. These techniques

are promising for the manufacture of lobster eye optics. They permit the fabrication of the

required structures in a geometry with inherently good alignment.

Silicon crystals are commonly used by solid state physicists and electrical engineers as x-ray

minors because of the extremely good surface quality of a highly polished wafer.

One-dimensionally focusing mirrors have been constructed by bending thin wafers into a

cylinder (Kaminsky 1987). However, these laboratory optics do not have the large area required

for astronomical applications. The application of silicon to astronomical x-ray optics has been

pioneered by Joy and Weisskopf (1991). As a first step, they measured the surface of a sample

wafer using an optical profilometer. On spatial scales less than 0.1 mm the silicon surface met

or surpassed the AXAF mirror requirements. However, significant surface errors were found on

scales greater than a few millimeters. These errors seem to arise from bending the wafers.

While the mid-scale surface errors are a significant problem for the large telescope (15.8 meter

focal length) constructed by Joy and Marshall, they should not be a problem if the optical

surfaces are shorter than a few millimeters, as will be the case in our lobster eye lenses.

An array of parallel reflecting surfaces can be constructed by etching pores completely

through a silicon wafer. A 2-d lobster eye telescope consists of square pores in a spherical

geometry and a 1-d lobster eye consists of rectangular pores in a cylindrical geometry. Due to

the problems involved in bending a silicon wafer into a spherical shape, we plan to concentrate

initially on the construction of 1-d silicon lobster eye lenses. Lenses that focus in two

dimensions can be obtained by crossing two 1-d focusing lenses (similar to a KirkPatrick-Baez

geometry).

3.2.1 Fabrication

We fabricate lobster eye lenses by anisotropically etching rectangular pores completely

through a single crystal silicon wafer. Single crystal silicon has a diamond cubic lattice, the

most closely packed lattice in which each atom has four nearest neighbors. The nearest neighbor

distance is 2.43 A while the lattice spacing is 5.43 A. In a cubic lattice, crystal directions are

perpendicular to their corresponding crystal planes. The crystal planes most often referred to are

the <100>, <110>, and <111> planes. Anisotropic etching uses a chemical which etches certain

silicon crystals planes more rapidly than others. The best available anisotropic etchant etches

<100> and <110> silicon planes as much as 500 times faster than <111> planes (Kendall 1975).

The geometry of anisotropic etching is shown in Figure 2. By aligning the < 111 > planes

perpendicular to the wafer surface, it is possible to etch a pattern completely through a wafer

with very little distortion. We etched rectangular pores completely through <110> oriented

silicon wafers. The larger surfaces of the pores (the mirror elements) were aligned with the

<111> planes of the crystal.
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Thecrucialstepsin etchinga wafer are:

1) Depositing a mask of a material that will not be etched.

2) Exposing a photolithographic pattern, aligned with the crystal structure, onto the lens.

3) Removing the exposed areas of the masking layer.
4) Performing the etch.

5) Removing the mask and cleaning the wafer.

The Micro Devices Laboratory (MDL) at JPL has an active program for the development of

silicon mieromachining techniques for space applications. Our research program fit well into the

overall MDL program goals as it required the development of new techniques in order to meet

new scientifically motivated requirements. The first fabrication was done by Dr. Kenny during

the spring of 1992. Subsequent fabrication was done by Mr. Chen under the supervision of Dr.
Kenny during the summers of 1992 and 1993.

3.2.2 First Lenses

The first set of lenses was fabricated as a proof of concept that silicon micromachining could

be used to produce relatively large (millimeter deep) structures that were accurately aligned. We

selected potassium hydroxide (KOH) as the anisotropic etch because it has the highest selectivity

of any anisotropic etch. The initial etch solution was 44g KOH: 100mL 1-120 at 50°C. Ideally,

this solution will have a <110>/<111> etch rate ratio of 40(): 1. In practice this ratio is reduced

due to mask rnisalignment, surface contamination and defects, and the difficulty of refreshing
the solution deep in the etched grooves. Nevertheless, we have achieved etch ratios of better
than 100:1.

KOH also etches SiO2, the most convenient masking film. Since the rate at which KOH

etches oxide is approximately the same as its etch rate on the <111> plane of silicon, we fh-st

tried to use a thick (3 _tm) oxide as our masking layer. Unfortunately, this caused severe stress

on the crystal structure of the substrate, resulting in drastic and uneven undercutting.

Furthermore, the damage to the crystal remained even after the oxide was stripped off by HF,
rendering those wafers useless for our experiments. We were forced to abandon oxide and use a

Si3N 4 layer instead. The disadvantage of using a nitride layer is that unlike oxygen, nitrogen

does not diffuse significantly through silicon. The nitride layer must be deposited by chemical

vapor deposition (CVD). We tried several different nitride deposition systems at JPL, Caltech,

and Berkeley. The only one that achieved acceptable results was the low pressure CVD system

at Berkeley. Their process deposits a nitride layer with a higher than normal silicon content to

reduce the stress resulting from thermal expansion and contraction during deposition. The result

is a nitride layer that is exceptionally sturdy and free of pinholes. The Microdevices Laboratory

at JPL is currently acquiring the same system for in-house nitride deposition.

We started with 2" diameter, < 110> oriented single crystal silicon wafers with thicknesses

ranging from 800 to 2000 Ima. A 0.5 }am silicon nitride layer was deposited on both sides of the

wafer. Each silicon crystal is cut with a "fiat", a surface which is nominally aligned with the

crystal planes. Typically, the flat is parallel with the <111> planes perpendicular to the surface

to an accuracy of 1o. We used the fiat to align a photolithographic mask, consisting of 15 prn

wide rectangular channels on 100 }am centers. The exposed nitride was removed using a CF 4

plasma reactive ion etch (RIE). After stripping the photoresist, the wafer was placed in a quartz

etching apparatus containing the KOH solution, which was periodically manually refreshed to
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Figure 2: Geometry of anisotropic etching.

Figure 3: Photograph of the front surface of an etched wafer.



maintainthe correctconcentrationandremovedissolvedsilicon. Thewafer took more than

thirty days to etch through completely, after which the remaining nitride was removed by a

phosphoric acid etch. Due to undercutting, the resulting channels were approximately 50 gm
wide.

A photograph of one of our fast lenses is shown in Figure 3. The lens is 800 grn thick and

has 50 Inn wide channels and a 100 lma period. The wafer is 2 inches in diameter and the lens

has a projected surface area of approximately 10 cm 2. Our first silicon lenses show alignment

vastly superior to the best MCP lenses. Because the channels are etched along the crystal planes

of the silicon lattice, the reflecting walls that are produced show excellent alignment. We

consider the channel-to-channel alignment problem to be completely solved with this technique.

We measured the surface profile of the anisotropically etched reflecting planes of a 2000 lma

thick lens using a Tencor Alpha-Step stylus profilometer. The surface profile from a

representative section of the <111> surface is shown in Figure 4. The surface roughness is

approximately 110/1, RMS over small regions. Roughness of this magnitude would produce

significant image degradation due to scattering. We concluded that the reactive ion etch (RIE)

that removes the remaining nitride layer after the KOH etch may be the source of the roughness.

3.2.3 Second Lenses

For the second series of lenses a number of improvements were made in the fabrication

procedure. The mask deposition technique was not altered_,as the silicon nitride mask had been
proven to perform well.

To improve the alignment of the photolithographic pattern, we used the anisotropic etch to

find the true crystal plane orientation before aligning the lens pattern. After depositing the

mask, we expose a "wagon wheel" pattern onto a small region of the wafer. The pattern consists

of a number of lines, all pointed towards a common origin, rotated through small fractions of a

degree relative to each other. We expose this pattern and perform a shallow etch; the lines most

closely aligned with the crystal planes survive the etch. This technique allows us to determine

the alignment of the crystal planes to 0.1 o accuracy, instead of the 1o degree accuracy of the
manufacturer's alignment fiat.

To improve the etch process, a wafer agitator was designed by Nashrid Kibria, an

undergraduate at Columbia. A suitable agitator was not commercially available. The agitator is

used to refresh the solution more thoroughly in the very deep grooves of thick wafers to improve

the etch rate and etch selectivity. It was also decided to reduce the temperature of the etch to

room temperature and increase the concentration to 44%wt KOH in H20. According to the

literature, KOH is more selective at lower temperatures, although the overall etch rate is also

reduced. Finally, the nitride layer remaining after etching was removed using phosphoric acid, a
chemical etch, instead of by RIE.

Using a process incorporating these improvements, we produced 1 mm thick wafers with

15 _tm pores spaced 100 _tm apart. The undercutting has been drastically reduced to

approximately 5 lam for the entire 1 mm depth, making the channel aspect ratio 40:1. We

performed measurements of the <111> etched surfaces of these newer wafers. The surface

profile from a representative section of the <111> surface is shown in Figure 5. The RMS

roughness is on the order of 30/_,, compared to 110/_ for our first wafers. However, the

surface still exhibits large step features.



3.3 X-Ray Test Facility

During the summer of 1993, Eric Ford, a graduate student at Columbia, and Jay Demas, an

undergraduate at Columbia, constructed a facility that allows us to test the x-ray reflectivity of

our lenses at angles up to 15 °, as well as perform Bragg scattering measurements at angles up to

50 ° (see Figure 6). A water-cooled x-ray source built at Columbia is housed in a small vacuum

chamber with a polypropylcne x-ray window. X-rays pass through a 1 meter pipe into a large

steel chamber containing an optical table. On the optical table arc mounted an entrance

collimator, a lens holder on a rotating stage, and a non-imaging proportional counter on a linear

stage. The detector has a narrow (adjustable) entrance aperture. The one-dimensional intensity

profile is reconstructed by scanning the detector along the range of the linear stage. The linear

stage can be attached to a number of positions on the table, each 1 meter away from the lens.

By choosing an appropriate position and adjusting the micropositioners on the rotating and linear

stages, any 0-20 combination up to a maximum of d:l 5 ° can be achieved. The detector can also

be mounted at positions that are 0.5 m away from the lens at wider angles selected for Bragg

scattering measurements on silicon. The x-ray source can accept a number of different anodes to

generate characteristic x-rays lines up to 6 keV. The main chamber is pumped down to 10 .3 ton"

by a mechanical pump, while an ionization pump brings the source chamber below l0 6 ton".

Using this chamber it is possible to make measurements on our lenses with x-rays in an energy

range extending from the carbon K line (277 eV) to the iron K line (6.4 keV).
¢

4 Conclusion

Lobster eye optics are a novel x-ray optical technique which may allow the construction of

future scientifically productive x-ray astronomy missions with low total mission costs. The goal

of this research program was to fabricate a prototype x-ray lens with 100-micron-scale optical

elements using anisotropic etching of single crystal silicon wafers. Requirements on the

geometry, surface alignment, and surface quality of the lens were determined by considering the

scientific goals of future x-ray astronomy missions. We have established that micromachined

lenses can bc made with the proper geometry and alignment accuracy (Chen 1993). Wc made

significant progress towards solving the remaining problem of surface roughness, obtaining an

RiMS roughness of 30 A in our most recent wafers.

Andrew Chen will continue the study of the anisotropic etch process during a visit to JPL

during June through August of 1994. During that period, wc plan to fabricate a number of new

wafers with pore geometries optimized to study particular aspects of the etching process and the

production of roughness during etching. The study will continue in Fall 1994, with etching and

surface analysis performed at Columbia.
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